# Calor LPG THE COMPLETE ENERGY SOLUTION

CALOR

# LPG in Commercial and Industrial Applications



# **Course Content**

- Unit 1 LPG Product Knowledge
- Unit 2 Gas Regulations & Standards
- Unit 3 Bulk Tank Installations
- Unit 4 Cylinder Storage
- Unit 5 Pipe Work
- Unit 6 Utilisation





#### **UNIT 1 : LPG PRODUCT KNOWLEDGE**







#### UNIT 1 : WHERE DOES LPG COME FROM?



LPG is a naturally occurring by-product of natural gas extraction (60%) and crude oil refining (40%) Therefore we either use it or it is wasted.







## UNIT 1 : WHAT IS LPG?

#### LIQUEFIED PETROLEUM GAS AND IT COMES IN TWO FORMS

#### **COMMERCIAL PROPANE**

Chemical Makeup: C3 H8

Boiling Temperature: -42°C

Storage Conditioners:

LPG

Bulk Tanks and Red Cylinders



#### BUTANE

Chemical Makeup: C4 H10

Boiling Temperature: -2°C

Storage Conditioners:

Yellow Cylinders





#### **UNIT 1 : LPG CHARACTERISTICS**

1. Under moderate pressure LPG becomes a liquid.

Easy to store large quantities in specially constructed vessels and cylinders.

 Heavier than air and natural gas so therefore will search out and accumulate at the lowest levels.
 Such as drains, pits, basements – NO LPG appliances in basements.

#### These 2 key characteristics distinguishes LPG from Natural Gas



#### UNIT 1 : LPG HAS A HIGH CALORIFIC VALUE

#### THE GROSS CALORIFIC VALUE

# PROPANE(LPG) 95.0 MJ/m<sup>3</sup> (2500btu's/ft<sup>3</sup>) BUTANE(LPG) 121.5 MJ/m<sup>3</sup> (3200btu's/ft<sup>3</sup>)

METHANE (Nat. Gas)

38.0 MJ/m<sup>3</sup>

(1040 Btu's/ft<sup>3</sup>)

MEGAJOULES PER CUBIC METRE (MJ/m<sup>3</sup>) or BRITISH THERMAL UNITS PER CUBIC FOOT (Btu's/ft<sup>3</sup>)





#### **UNIT 1 : HOW IS LPG STORED?**

#### LPG IS STORED AS A LIQUID IN SPECIALLY DESIGNED PRESSURE VESSELS UNDER MODERATE PRESSURE.







In its natural form LPG is not readily detectable in air so to enable detection by smell a stenching agent is added

#### **Ethyl Mercaptan or Dimethyl Sulphide**

Detectable at 20% of the Lower Explosive Limit approximately 0.4% in air





#### **UNIT 1 : DETECTION OTHER THAN BY SMELL?**

#### YES!

#### LPG LIQUID EVAPORATING WILL CREATE A COOLING EFFECT AND CAUSE THE WATER VAPOUR PRESENT IN THE AIR TO 'FREEZE' REFRACTORY DIFFERENCES BETWEEN GAS AND AIR WILL CAUSE A LEAK TO 'SHIMMER'





#### **UNIT 1 : HOW IS THE GAS VAPOUR PRODUCED?**

#### THE LIQUID BOILS SIMILAR TO WATER IN A KETTLE EXCEPT THE **BOILING TEMPERATURES ARE VERY DIFFERENT**

#### WHEN THE PRESSURE IN THE VESSEL IS REDUCED





Closed







Ο 0

#### UNIT 1: WHAT TEMPERATURE DOES LPG VAPOURISE?

#### LPG BOILS AT VERY LOW TEMPERATURES



- ✓ Propane in Ireland does not have vaporisation issues.
- ✓ Butane performs well at an ambient temperature of 10°C.
- Butane will be affected if the air temperature falls below minus 2°C.



## **UNIT 1 : THE VAPORISATION PROCESS**

LPG







# ARE TANKS OR CYLINDERS COMPLETELY FILLED?

#### THEY MUST NEVER BE FILLED 'HYDRAULICALLY'

LPG IN ITS LIQUID STATE HAS A HIGH RATE OF THERMAL EXPANSION. IT IS IMPORTANT TO LEAVE A VAPOUR SPACE ABOVE THE LIQUID LEVEL



LPG



#### **UNIT 1 : ESCAPE OF LIQUID PROPANE**

The liquid will expand over 274 times when vaporised 1 VOLUME 274 VOLUMES PROPANE VAPOUR





#### **UNIT 1 : SPECIFIC GRAVITY OR RELATIVE DENSITY**

#### LPG is Heavier than Air

| Natural Gas     | = | 0.58 | s.g. |
|-----------------|---|------|------|
| ♦Air            | = | 1    | s.g. |
| Propane         | = | 1.5  | s.g. |
| <b>♦</b> Butane | = | 2.0  | s.g. |



LPG



#### **UNIT 1 : IS LPG EASILY IGNITED?**

YES : LPG IS EXTREMELY FLAMMABLE AND IS READILY IGNITED

**IGNITION TEMPERATURES FOR PROPANE IS 460°C - 580°C** 

MUST HAVE THE CORRECT MIXTURE OF PROPANE AND AIR







#### **UNIT 1: COMBUSTION AIR REQUIRED FOR PROPANE**







#### **UNIT 1: PRODUCTS OF GOOD COMBUSTION**

WHEN LPG IS BURNED COMPLETELY, THE PRODUCTS OF COMBUSTION ARE HARMLESS

HOWEVER INCOMPLETE COMBUSTION CAN RESULT IN THE PRODUCTION OF CARBON MONOXIDE (**CO**) WHICH IS HARMFUL.



LPG



# **UNIT 1: CO - CARBON MONOXIDE**

#### WHAT IS IT?

- Highly poisonous gas.
- No smell.
- No colour.
- No taste.

#### HOW DOES IT OCCUR?

- Poorly installed or maintained appliances
- Oil, Solid Fuel, Wood, Gas

#### WHAT ARE THE SYMPTOMS?

- When you inhale CO it starves the body of O<sub>2</sub>
- Symptoms similar to every day illnesses
  - HEADACHES
  - BREATHLESSNESS
  - COLLAPSE
  - NAUSEA
  - DIZZINESS
  - LOSS OF CONSCIOUSNESS

Even low levels of exposure of CO over a long period of time can cause lasting damage to your health, including permanent brain damage. More serious cases can cause death

More Information available at: <u>www.hseni.gov.uk</u> and <u>www.carbonmonoxide.ie</u>





# **UNIT 1: ENVIRONMENT**



| LPG IS:                           |  |
|-----------------------------------|--|
| Cleaner Burning                   |  |
| Reduced CO <sub>2</sub> Emissions |  |
| Convenient                        |  |
| No Soil or Water Pollution        |  |
| LPG is non-toxic                  |  |

\*Source – SEAI 15th October 2013

CO<sub>2</sub> emission factors for electricity vary from year to year depending on the fuel mix used in power generation





#### **UNIT 2 : GAS REGULATIONS AND STANDARDS**



LPG KCEPTIONA ENERGY



# **UNIT 2: NATIONAL STANDARD AUTHORITY**

Regulations governing the use of LPG in Republic of Ireland for Storage & Installations

- IS 3216:2010 Code of Practice for the Bulk Storage of LPG
   Part 1 General Requirements
   Amendment No.3 : 2001 –
   Installation of underground vessels
- IS 3213 :1987 Storage of LPG Cylinders and Cartridges
- IS 813 : 2002 Domestic Gas Installations
- IS 820 : 2003 Non-Domestic Gas Installations
- IS 329 : 2003 Gas Distribution Mains
- IS 265 : 2000 Installation of Gas Service Pipes Parts 1 & 2 (Fourth Edition)







#### **UNIT 3 : BULK TANK INSTALLATIONS**







![](_page_23_Picture_4.jpeg)

![](_page_23_Figure_5.jpeg)

## **UNIT 3 : LPG CONVERSION FACTORS**

#### **Volume Conversion**

![](_page_24_Figure_2.jpeg)

**Energy Conversion** 

LPG XCEPTIONA ENERGY

![](_page_24_Figure_4.jpeg)

![](_page_24_Picture_5.jpeg)

## UNIT 3 : BULK TANK STORAGE AND SIZING

Selecting the appropriate size of Tank/s depends on:

**1.** Customer Requirements (Application, Aesthetics)

2. Safety Considerations & Physical Constraints (Location requirements, Surrounding Area)

**3.** Required Off-take and/or Minimum Storage Capacity.

4. Access of Tank and Gas Delivery

LPG

![](_page_25_Picture_6.jpeg)

#### **UNIT 3 : TANK OFF-TAKES**

LPG

Off-take = amount of vapour a tank can deliver at any point of time by natural vaporisation

| Tank off-take table*       | u/g = underground |      |      |
|----------------------------|-------------------|------|------|
| Tank capacity (kg propane) | Kw                | m³/h | Kg/h |
| 200                        | 60                | 2.3  | 4.2  |
| 600                        | 145               | 5.7  | 10.5 |
| 1000                       | 187               | 7.1  | 13.2 |
| 1000 (u/g)                 | 94                | 3.5  | 6.8  |
| 2000                       | 264               | 10.2 | 19   |
| 2000 (u/g)                 | 132               | 5.1  | 9.5  |
| 3000                       | 347               | 13.4 | 25   |
| 4000                       | 513               | 19.8 | 36.9 |
| 6500 (u/g)                 | 366               | 14.2 | 26.4 |

![](_page_26_Picture_3.jpeg)

#### **UNIT 3 : TANK SITING – ABOVE GROUND**

![](_page_27_Figure_1.jpeg)

LPG EXCEPTIONA ENERGY

#### Distance from buildings, boundaries and sources of ignition

| LPG<br>capacity<br>(kg) | Max no.<br>of tanks<br>in a group<br>(m) | From buildings<br>boundary, property<br>line or fixed source<br>of ignition (m) <sub>A</sub> | With a<br>fire wall<br>(m)<br>B | Distance<br>between<br>(m)<br>C |  |
|-------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|--|
| 230                     | 3                                        | 2.5                                                                                          | 0.3                             | 1.0                             |  |
| 600                     | 5                                        | 3.0                                                                                          | 1.5                             | 1.0                             |  |
| 1000                    | 3                                        | 3.0                                                                                          | 1.5                             | 1.0                             |  |
| 2000                    | 6                                        | 7.5                                                                                          | 4.0                             | 1.0                             |  |
| 3000                    | 6                                        | 7.5                                                                                          | 4.0                             | 1.0                             |  |
| 4000                    | 3                                        | 7.5                                                                                          | 4.0                             | 1.0                             |  |
| 12000                   | 3                                        | 15.0                                                                                         | 7.5                             | 1.5                             |  |

![](_page_27_Figure_4.jpeg)

now you can

#### **UNIT 3: WIDE RANGE OF AG STORAGE OPTIONS**

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

#### **UNIT 3 : SCREENING DISTANCES**

![](_page_29_Figure_1.jpeg)

Non flammable ranch type fence

![](_page_29_Figure_3.jpeg)

![](_page_29_Picture_4.jpeg)

Evergreen shrubs

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

![](_page_29_Picture_8.jpeg)

LPG EXCEPTIONAL ENERGY

# **UNIT 3: UNDERGROUND TANKS**

- Safety Distance observed from Tank Lid
- Incorporation of a Gas Dispersion wall results in a reduced Safety Distance requirement
- No vehicular movement permitted on tank area
- Tanks cannot be located in areas prone to flooding
- No underground services permitted within the Tank Excavation Area

More technical info regarding Underground Tanks is available from Calor Gas Customer Engineering

![](_page_30_Picture_7.jpeg)

#### **UNIT 3: UNDERGROUND TANKS SAFETY DISTANCES**

#### NSAI I.S 3216: 2010 Bulk Storage of Liquefied Petroleum Gas

| Tank Size | To Tank | To Valve Asser                 |                             |                               |  |
|-----------|---------|--------------------------------|-----------------------------|-------------------------------|--|
| (kg)      | Surface | Without gas<br>Dispersion Wall | With gas<br>Dispersion Wall | Distance<br>Between Tanks (m) |  |
| 1000      | 1*      | 3                              | 1.5                         | 1                             |  |
| 4000      | 1*      | 3                              | 1.5                         | 1                             |  |
| 6500      | 3       | 7.5                            | 4                           | **                            |  |

\* Recommended to be no less than 2 metres so as to minimise effects on building structure.

\*\* Subject to excavation design. Minimum 1 metre.

**ILLUSTRATION OF A 1000KG (1TONNE) UNDERGROUND** TANK

LPG ENERGY

![](_page_31_Figure_6.jpeg)

![](_page_31_Picture_8.jpeg)

#### **UNIT 3: EFFECTIVE USE OF A 0.5m DISPERSION WALL**

![](_page_32_Picture_1.jpeg)

LPG XCEPTIONA ENERGY

![](_page_32_Picture_2.jpeg)

CA

now you can

#### **UNIT 3: VARIOUS UNDERGROUND INSTALLATIONS**

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)

#### **UNIT 3: SAFETY DISTANCE FROM ELECTRICAL CABLES**

![](_page_34_Figure_1.jpeg)

Separation distances from overhead power cables.

![](_page_34_Picture_3.jpeg)

![](_page_34_Picture_4.jpeg)

# **UNIT 3: TANK TELEMETRY**

![](_page_35_Figure_1.jpeg)

time - guaranteeing you never run out\*

(

LPG XCEPTIONA ENERGY

![](_page_35_Picture_3.jpeg)

#### **UNIT3: LPG DELIVERY TANKER ACCESS**

![](_page_36_Figure_1.jpeg)

- Minimum width of entrance 4 Metres
- Minimum height clearance of entrance 4 Metres

LPG EXCEPTIONA

- Minimum turning circle 12 Metres
- 8 tonne tanker gross weight 20 tonnes
- 9 tonne tanker gross weight 23 tonnes
- Maximum hose length 30 Metres

![](_page_36_Picture_8.jpeg)

# **UNIT 4: CYLINDER INSTALLATIONS**

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

![](_page_37_Picture_4.jpeg)

#### **UNIT 4: LEISURE & DOMESTIC CYLINDERS**

![](_page_38_Picture_1.jpeg)

CAL

now you can

LPG XCEPTIONAL ENERGY

#### **UNIT 4: COMMERCIAL/INDUSTRIAL CYLINDERS**

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Picture_3.jpeg)

## **UNIT 4: MULTI CYLINDER INSALLATIONS**

![](_page_40_Figure_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

# **UNIT 4: SIZING CYLINDERS**

#### Sizing Gas Cylinder's: 3 Key Questions

1. What is the maximum gas

rate of the appliances?

2. Is there more than one

appliance?

3. What is the pattern of use?

|                               | Maximum Continuous<br>propane Off-take |      |      |  |  |  |
|-------------------------------|----------------------------------------|------|------|--|--|--|
| Cylinder Size<br>(Propane kg) | kW                                     | m³/h | kg/h |  |  |  |
| 34                            | 24                                     | 0.93 | 1.73 |  |  |  |
| 47                            | 34                                     | 1.28 | 2.4  |  |  |  |

![](_page_41_Picture_8.jpeg)

![](_page_41_Picture_9.jpeg)

## **UNIT 4: LPG CYLINDERS SAFETY DISTANCES**

Safety distances of LPG cylinders from buildings and other potential sources of ignition. LPG Gas Association COP 24 Parts 1 to 6

![](_page_42_Figure_2.jpeg)

LPG

![](_page_42_Picture_3.jpeg)

#### **UNIT 5: PIPEWORK**

![](_page_43_Figure_1.jpeg)

(IS 329 Gas Distribution Mains)
(IS 265 Installation of Gas Service Pipes)
(IS 813 Domestic Gas Installations)
(IS 820 Non-Domestic Gas Installations)

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_4.jpeg)

#### Above Ground Pipework Material

- Steel
- Copper

**Under ground Pipework Material** 

- Polyethylene Plastic SDR11 (PE)

![](_page_44_Picture_6.jpeg)

![](_page_44_Picture_7.jpeg)

#### **UNIT 5: THE INSTALLATION PIPEWORK**

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

#### **UNIT 5: PIPE SIZING**

- LPG has a much larger Calorific Value than Natural Gas, therefore pipe sizes for LPG can be much smaller.
- Contact Calor for assistance with Pipe Sizing
- Tables available in the Installation Guide.

| Effective                                               | e cap                                                                                           | acity of S | TEEL p                              | oipe for | LPG     |             |         |                          |             |          |           |                          |     |         |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|-------------------------------------|----------|---------|-------------|---------|--------------------------|-------------|----------|-----------|--------------------------|-----|---------|--|--|
| Length                                                  |                                                                                                 | 8mm        |                                     | 15mm 20  |         |             | 20mm    |                          | 25mm        |          |           |                          |     |         |  |  |
| m                                                       | He                                                                                              | Effectiv   | ive capacity of COPPER tube for LPG |          |         |             |         |                          |             |          |           |                          |     |         |  |  |
|                                                         | μV                                                                                              | Lengt      | 6m                                  | ım       | 10mm    |             |         | 15mm 22mm                |             | 28mm     |           | ]                        |     |         |  |  |
| 3                                                       | 9.0                                                                                             | h          | Heat                                | m³/h     | Heat    | m³/h        | Heat    | m³/h                     | Heat        | m³/h     | Heat      | m³/h                     | 1   |         |  |  |
| 6                                                       | 6,8                                                                                             | m          | input<br>kW                         | Effec    | tive ca | pacity of   | POLY    | ETHYLE                   |             | PE) for  | LPG       |                          |     |         |  |  |
| 9                                                       | 5,1                                                                                             | 3          | 2.20                                |          | leat In | put         | Ma      | Maximum length (25mm OD) |             |          | M         | Maximum length (32mm OD) |     |         |  |  |
| 12                                                      | 4,3                                                                                             |            | _,                                  | kW m³/h  |         |             | 1       |                          | m           |          | m         |                          | -   |         |  |  |
| 15                                                      | 4,4                                                                                             | 4,4        | 4,4                                 | 6        | 1,54    | 28,6        | 1       | 1,104                    | 72          |          |           |                          | 213 | 3       |  |  |
| 21                                                      | 3                                                                                               | 9          | 1,32                                | 30,8     |         | 1,189       | 62      |                          |             |          | 184       | ļ                        |     |         |  |  |
| 24                                                      | 3.                                                                                              | 12         | 1,10                                | 33,0     |         | 1,274       | 54      |                          |             |          | 160       | )                        |     |         |  |  |
| NOTE: T                                                 | he.                                                                                             | 15         | 0,88                                | 35,2     |         | 1,358       | 47      |                          |             |          | 140       | )                        |     |         |  |  |
| mbar ma                                                 | axin                                                                                            | 18         | 0,88                                | 37,4     | -       | 1,443       | 42      |                          |             |          | 125       | 5                        |     |         |  |  |
|                                                         | -                                                                                               | 21         | 0,66                                | 39,6     | 1       | 1,528       | 37      |                          |             |          | 111       |                          |     |         |  |  |
|                                                         |                                                                                                 | 24         | 0,66                                | 41,8     |         | 1,613       | 33      |                          |             |          | 100       | )                        |     |         |  |  |
|                                                         |                                                                                                 | NOTE: 1    | The hea                             | 44,0     |         | 1,698       | 30      |                          |             |          | 90        |                          |     |         |  |  |
|                                                         | maximum press NOTE: The heat input is based upon propane at low pressure of 37mbar and 2.5 mbar |            |                                     |          |         |             |         |                          |             |          |           |                          |     |         |  |  |
| Soun maximum pressure drop over the length of the pipe. |                                                                                                 |            |                                     |          |         |             |         |                          |             |          |           |                          |     |         |  |  |
|                                                         |                                                                                                 |            |                                     |          | S       | ource: IS 3 | 3216:20 | 02 – Irish               | Standard fo | or Domes | tic Gas I | Installation             | S   |         |  |  |
|                                                         |                                                                                                 |            |                                     |          |         |             |         |                          |             |          |           |                          |     | now you |  |  |

# **UNIT 5: REGISTERED INSTALLERS**

#### **Northern Ireland**

![](_page_47_Picture_2.jpeg)

LPG

**Republic of Ireland** 

![](_page_47_Picture_4.jpeg)

A gas safe registered installer (in Northern Ireland) is responsible for the installation of all gas pipework and appliances and for making the connection to outlet pipework at vessel. An RGII registered installer in the Republic of Ireland is responsible for domestic gas works for LPG installations.

A written GAS SAFE or RGII certificate is required before the gas can be turned on.

The gas supply may only be turned on by Calor approved personnel.

![](_page_47_Picture_8.jpeg)

#### **UNIT 6: UTILISATION OF LPG**

![](_page_48_Figure_1.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

#### **UNIT 5: GENERAL ADVICE ON LPG APPLIANCES**

1. Simple, non-complex flue arrangement

2. Ventilation in accordance with Building Regulations

(TGD J) Combustion air and water vapour

3. Consider room sealed appliances where available.

LPG

![](_page_49_Picture_5.jpeg)

# **UNIT 5: COMMERCIAL APPLICATIONS**

#### Sectors

- Commercial
- Hospitality & Leisure
- Catering
- Education
- Healthcare
- Government Buildings
- Industrial Processing/Manufacturing
- Agricultural

LPG

#### **Applications**

- Space Heating
  - Radiators
  - Warm Air
  - Radiant
- Hot Water
  - Stored
  - Instantaneous
- Catering
- Laundry
- Air-Conditioning
- CHP
- Gas Heat Pump

![](_page_50_Picture_23.jpeg)

## **UNIT 5: COMMERCIAL SPACE APPLICATIONS**

# **Radiant Heating**

- High Levels of High Efficiency
- Deliver heat precisely and exactly where required
- Rapid Heat up & Cool down time
- Highly controllable
- Easy to Install, manage and maintain
- Factories, Workshops, Warehouses, Sports & Community Halls, Churches

![](_page_51_Picture_8.jpeg)

![](_page_51_Picture_9.jpeg)

![](_page_51_Picture_10.jpeg)

![](_page_51_Picture_11.jpeg)

![](_page_51_Picture_12.jpeg)

# **UNIT 5: COMMERCIAL SPACE APPLICATIONS**

# Warm Air Heating

- Direct or Indirect Fired
- Fast response
- Highly Controllable
- Effective Warm Air Distribution
- Can also be used for Cooling
- Easy to Install, manage and maintain
- 90% efficient
- Offices, Retail Units, Warehouses, Leisure centres

![](_page_52_Picture_10.jpeg)

![](_page_52_Picture_11.jpeg)

## UNIT 5: COMMERCIAL HYBRID SYSTEM

- Combines benefits of cost effective Air to Water Heat pumps with extremely efficient modulation of gas boilers
- Most economic balance of Heat Source is Supplied
- 50% savings compared to Oil System

LPG

Web connected control system which can be accessed remotely

![](_page_53_Picture_5.jpeg)

![](_page_53_Figure_6.jpeg)

# **UNIT 5: Boilers**

#### Retrofitting

- Change the burners
- Older boilers not designed to condense, doing so can damage
- No improvement in efficiency, fuel switch only
- Less expensive option (in the short term)
- Consider boiler condition/in test (steam boilers)

#### **New Boilers**

- Opportunity to greatly improve efficiency
- Modulating to match the load requirement
- Important to review operation of the entire system (lower the temperatures if possible)

Higher capital but payback can be achieved

![](_page_54_Picture_12.jpeg)

LPHW Burner Switch

![](_page_54_Picture_14.jpeg)

Steam Boiler Conversion

![](_page_54_Picture_16.jpeg)

# **UNIT 5: Typical Example**

#### Large Hotel

- 2 x 800kW Boilers (for heating)
- Consuming 300,000 Litres of oil per year
- Assume existing system efficiency of 70%, reasonable assumption, given age, condition and technical set-up
- Replaced with high efficiency modulating LPG boilers, typical rating of 89%
- >20% Primary Energy Saving
- >30% Carbon Savings (263 Tonnes/year)
- Estimated €50k Savings/Year

![](_page_55_Picture_9.jpeg)

![](_page_55_Picture_10.jpeg)

![](_page_55_Picture_11.jpeg)

![](_page_55_Picture_12.jpeg)

## **UNIT 5: Water Heating**

#### **Indirect Water Heating**

- Boiler system heating a coil in a calorifier
- More losses pumping, heat loss, thermal efficiency of boiler, coil etc..
- Difficult to achieve condensing at low demand
- Storing hot water » Legionella considerations
- Re-heat times of the storage vessel a consideration
  - Increase in boiler size » Capital Cost
- Boilers required all year round
- Traditional system in Ireland

LPG

 Plate Heat Exchangers also an option but expensive and require a lot of control

![](_page_56_Figure_11.jpeg)

#### Indirect Water Heating Schematic

![](_page_56_Picture_13.jpeg)

# **UNIT 5: Water Heating**

#### **Continuous Flow**

LPG

- High efficiency, modulating flame
- Low or zero standing losses
- Good for intermittent use
- Capital cost, reasonable if sized correctly
- Storage/buffer can be incorporated
- Easy incorporation of new technologies

![](_page_57_Picture_8.jpeg)

Dairy Farm example – no storage

![](_page_57_Figure_10.jpeg)

![](_page_57_Picture_11.jpeg)

#### **UNIT 5: COMMERCIAL CATERING**

![](_page_58_Picture_1.jpeg)

Substantial savings by using LPG compared to electricity.

![](_page_58_Figure_3.jpeg)

![](_page_58_Picture_4.jpeg)

![](_page_58_Picture_5.jpeg)

# UNIT 5: INDUSTRIAL APPLICATIONS

# **Any Industrial Process requiring Heat**

Incineration

Air handling

**Steam Boilers** 

**Industrial Water Heating** 

**Food Processing** 

**Paint Drying** 

Laundry

![](_page_59_Figure_9.jpeg)

![](_page_59_Picture_10.jpeg)

![](_page_59_Picture_11.jpeg)

![](_page_59_Picture_12.jpeg)

![](_page_59_Picture_13.jpeg)

# UNIT 5: FORK LIFT TRUCKS (FLT'S)

![](_page_60_Picture_1.jpeg)

#### Efficient

Lower Emissions No Battery to recharge Used Indoor & Outdoor Reduced engine noise. On site LPG storage.

![](_page_60_Picture_4.jpeg)

![](_page_60_Picture_5.jpeg)

![](_page_60_Picture_6.jpeg)

#### **UNIT 5: DOMESTIC CENTRAL HEATING**

![](_page_61_Picture_1.jpeg)

![](_page_61_Picture_2.jpeg)

![](_page_61_Picture_3.jpeg)

![](_page_61_Picture_4.jpeg)

![](_page_61_Picture_5.jpeg)

![](_page_61_Picture_6.jpeg)

EFFICIENT TUMBLE DRYING

INSTANT, EASY COOKING

![](_page_61_Picture_9.jpeg)

LPG EXCEPTIONAL

# UNIT 5: METERED DEVELOPMENTS COMMERCIAL AND DOMESTIC

![](_page_62_Picture_1.jpeg)

LPG XCEPTION ENERGY

![](_page_62_Picture_2.jpeg)

Communal LPG storage to serve a number of dwellings or business units.

Each network is designed, installed and maintained by experienced and qualified engineers.

An individual meter box is installed outside each customer dwelling or business unit for billing.

![](_page_62_Picture_6.jpeg)

## **UNIT 5: TYPICAL HOUSING ESTATE LAYOUT**

![](_page_63_Figure_1.jpeg)

![](_page_63_Figure_2.jpeg)

![](_page_63_Picture_3.jpeg)

![](_page_63_Picture_4.jpeg)

# **UNIT 5: LPG PARTNERS WITH RENEWABLES**

![](_page_64_Picture_1.jpeg)

![](_page_64_Figure_2.jpeg)

#### **Solar Panels**

LPG KCEPTIONA ENERGY

- Condensing, fully Modulating and Weather Compensated Gas Boiler (90+% efficient)
- Solar Panel System with Solar Station Control for Water Heating
- Heat Recovery Mechanical
   Ventilation System
- Three Zone System Control
- Increased Cavity Wall & Attic
  Insulation

#### Air Source Heat Pump

- Integrated Unit comprising of an Electric Heat Pump, a Condensing Boiler and a Hybrid System Manager.
- System manger, selects the most cost effective heat source for the current conditions.
- Works best at temperatures of 45°C.

![](_page_64_Picture_13.jpeg)

# CALOR – KEY FACTS

Calor is a wholly-owned subsidiary of SHV Gas based in the Netherlands.

SHV is the largest distributor of LPG in the world

Market Leader: Calor has 50% Market Share in the Irish LPG market.

![](_page_65_Figure_4.jpeg)

![](_page_65_Picture_5.jpeg)

![](_page_65_Picture_6.jpeg)

# SUMMARY

- Unit 1 LPG Product Knowledge
- Unit 2 Gas Regulations & Standards
- Unit 3 Bulk Tank Installations
- Unit 4 Cylinder Storage
- Unit 5 Pipe Work
- Unit 6 Utilisation

![](_page_66_Picture_7.jpeg)

![](_page_66_Picture_8.jpeg)

# LPG is a competitive alternative to Oil

# Thought you couldn't have Gas? Now You Can

![](_page_67_Picture_2.jpeg)

![](_page_67_Picture_3.jpeg)

# Questions

![](_page_68_Picture_1.jpeg)

![](_page_68_Picture_2.jpeg)

# Thank you

![](_page_68_Picture_4.jpeg)

![](_page_68_Picture_5.jpeg)